Jello: a retargetable Just-In-Time compiler for LLVM bytecode

Chris Lattner

Misha Brukman

Brian Gaeke

University of Illinois at Urbana-Champaign

{lattner, brukman, gaeke}@cs.uiuc.edu

ABSTRACT

We present the design and implementation of Jello, a re-
targetable Just-In-Time (JIT) compiler for the Intel IA32
architecture. The input to Jello is a C program statically
compiled to Low-Level Virtual Machine (LLVM) bytecode.
Jello takes advantage of the features of the LLVM bytecode
representation to permit efficient run-time code generation,
while emphasizing retargetability. Our approach uses an
abstract machine code representation in Static Single As-
signment form that is machine-independent, but can han-
dle machine-specific features such as implicit and explicit
register references. Because this representation is target-
independent, many phases of code generation can be target-
independent, making the JIT easily retargetable to new plat-
forms without changing the code generator. Jello’s ultimate
goal is to provide a flexible host for future research in run-
time optimization for programs written in languages which
are traditionally compiled statically.

1. INTRODUCTION

Jello is the code-name for a retargetable Just-In-Time
(JIT) compiler which currently translates bytecode for the
Low-Level Virtual Machine (LLVM) [13] into IA32 machine
code. In recent years, JIT compilation has proven itself to
be an effective way to improve the performance of bytecode
interpreters for a variety of languages. JIT compilers have
been built for many systems, supporting a variety of source
languages, including Perl 6, Java, and the Microsoft Com-
mon Language Runtime [12, 17, 18].

Jello is designed as a retargetable JIT compiler, only re-
quiring implementation of an instruction selector, machine
code emitter, and target machine description to add sup-
port for a new target. The influence of this feature globally
affects the entire code generator, implying that support for
retargetting must be designed in from the start. Although
Jello currently only targets the IA32 target, we feel that
being able to support the IA32 architecture, without hacks
in target-independent code, indicates that the separation is

clean between target-dependent and -independent code (the
TA32 architecture is known for its “quirks”).

This paper describes the design and implementation of
Jello, but more importantly, it describes design decisions
which must be made for an efficient Just-In-Time compiler.
The design of Jello is intrinsically tied to the retargetable
nature of the code generation phases. Being able to generate
code for multiple processors, in an efficient manner, is a
difficult problem. We also describe how constraints on the
implementation aided or hindered the development of the
code generator.

1.1 Important Properties of LLVM Bytecode

LLVM is a compiler infrastructure which uses a low-level
representation to represent programs written in arbitrary
source languages (we have implemented a C front-end so
far). The LLVM infrastructure uses the LLVM bytecode rep-
resentation to support aggressive traditional and interproce-
dural optimizations before native code generation. This rep-
resentation makes use of a low-level, strongly-typed, three-
address, load-store code representation in Static Single As-
signment [4] form, which is the input to the Jello runtime.
Also, programs compiled to LLVM bytecode are portable
across different architectures if they are type-safe.

LLVM has several features which make it a significantly
different input for a JIT compiler than other common
bytecode representations (such as the JVM or .NET plat-
forms [17, 18]). In particular, since LLVM is already in
SSA form, Jello does not need to construct SSA at run-
time for SSA-based optimizations (SSA construction is ex-
pensive, but allows for powerful optimizations). Another
important aspect of LLVM is that it does not guarantee
execution safety of the program like Java and .NET do. Be-
cause LLVM does not have implicit bounds checks in array
accesses, for example, the static compiler can perform ag-
gressive optimizations at compile-time, which makes many
optimizations at runtime unnecessary.

Finally, LLVM supports source languages (like C) where
it is possible to write non-type-safe programs. In these pro-
grams, some aspects of the target machine (endianness &
pointer size) can affect the bytecode representation [14].

Prior to Jello, the LLVM compiler infrastructure provided
a Sparc V9 static code generator, a C back-end, and a simple
interpreter named LLI. With the addition of the Jello exten-
sion to LLI, LLVM now has an efficient platform for dynamic
bytecode execution on the IA32 platform, and a framework
for adding new architecture support in the future.



1.2 The Jello Virtual Machine Architecture

The Jello Virtual Machine is designed to make it easy to
add new targets and to be flexible enough to support new
research in virtual machine technology. To support these
goals, the Jello architecture separates the code generation
process into a series of modular stages, simplifying addition
of new passes and replacement of existing ones.

To make it easy to retarget Jello, we designed the machine
code representation to be target-agnostic, using a target de-
scription interface to get concrete information from the ab-
stract machine code representation. This design cleanly par-
titions phases of compilation into target-specific and target-
independent phases. The overall structure of the Jello code
generator is diagrammed in Figure 1.

LLVM — Inst Sel — SSA Opts — LiveVar Analysis —
— Reg Alloc —FP — Prologue/Epilogue —
— Peephole Opts — Code emission — [A32

Figure 1: Jello Code Generation Phases

In the diagram, the target-specific phases (in bold) are
instruction selection, floating-point support (to support the
TA32 floating-point stack architecture), peephole optimiza-
tions, and code emission. The other passes in the pipeline
are machine-independent, using hooks to the target descrip-
tions to extract the requisite information, allowing them to
be reused by new architectures as they are developed.

1.3 Paper Organization

The remainder of the paper describes the design and im-
plementation of Jello. Section 2 starts by describing how
the abstract machine code for a function is represented.
In order to implement target-independent transformations,
target-agnostic code must be parameterized based on the
target it is working with. Section 3 describes these inter-
faces and Section 4 describes the target-independent phases
of code generation. Section 5 describes target-specific phases
of code generation that must be implemented for a target,
and Section 6 describes the implementation of these phases
for the TA32 in particular.

Section 7 describes the mechanism used by the JIT com-
piler to lazily compile functions of the program on demand.
Section 8 describes high-level experiences and observations
we have had. Section 9 describes related work and we con-
clude with Section 10.

2. MACHINE CODE REPRESENTATION

As a retargetable virtual machine, Jello must share as
much code between as many targets as possible. To do this,
phases operate on abstract machine code without needing to
know the exact semantics of the target machine instructions.
These phases operate on the machine code by inspecting
abstract properties of the code (such as which registers are
read and written to), allowing them to be applicable to any
target where the properties apply.

In particular, machine code is represented as a Control
Flow Graph for each function, with a list of abstract ma-
chine instructions making up each basic block. Abstract ma-
chine instructions are represented by a unique identifier and
a variable-length list of operands. Each operand in a ma-
chine instruction holds information about the type of data
held (immediate constant, register reference, or relocatable

reference, such as branch targets of function names). For
register references, the operand keeps track of whether the
instruction writes to the register, reads from the register or
does both.

Note that the representation does not have any infor-
mation about what the instruction itself does or how the
operands of the instruction are processed by the instruction
(this is abstracted behind the unique identifier for the in-
struction). This very abstract representation is lightweight,
keeping only the minimum required information, but is able
to represent machine instructions for arbitrary targets.

A key decision we made was to use SSA form in the ma-
chine code. Because LLVM is already in SSA form, this
is easy: the instruction selection pass converts SSA LLVM
code to SSA machine code. SSA is then available for target
independent transformations, enabling more efficient and
powerful optimizations on machine code.

Register operands to instructions may be physical reg-
isters or SSA registers, and are tracked in a very simple
target-independent manner. Each target register is assigned
a unique (small) identifier, and all physical and SSA regis-
ters are represented as unsigned 32-bit numbers. Register
values larger than the “maximum physical register bound-
ary” are used to represent SSA registers, and values lower
than the boundary are physical registers. A lookup table
is built, containing an entry for each register indicating the
register class and the instruction which defines an SSA reg-
ister (providing use-def chains).

Though a majority of the machine code is in SSA form,
some references to physical registers must always exist. For
example, Figure 2 shows a case where IA32 machine code
must use a mix of SSA virtual registers and physical regis-
ters.

mov %regl024, 100 ; Definition of SSA reg

mov EDX, %regl024 ; Set the source of the div
mov EAX, %regl025 ; Set the source of the div
div %regl026 ; BAX,EDX = EDX,EAX/%regl1024
mov %regl027 , EAX ; Move result into SSA reg

Figure 2: Example of machine code in SSA form

In this example, the TA32 ’div’ instruction divides the 64-
bit value <EDX,EAX> by a register operand. The EAX and EDX
registers are fixed by the instruction set as operands for the
’div’ instruction. In order to represent this, the generated
machine code contains a number of “copy” instructions con-
verting SSA registers to the appropriate fixed physical reg-
isters. This allows the machine code to explicitly represent
fixed register assignments without external annotations.

Physical registers that are used in this manner are only
allowed to be live for the duration of the basic block in which
they are contained. This allows a single linear scan over a
basic block to efficiently find def/use chains and reuse reg-
isters. An important point to notice about physical register
references is that they are fairly rare in mainline computa-
tion. Even in the TA32 instruction set, only a few instruc-
tions need to use preallocated registers like this; almost all
are pure SSA form. When the register allocator runs, SSA
register references are transformed into physical registers,
and the physical register lifetime restriction is lifted.

One of the most important aspects of this design is the
fact that target registers and target machine instructions
are represented with unique ID numbers that are opaque
to the target-independent code. In order to get information



about the semantics of the instructions or information about
the registers, the Target Description interfaces (described in
Section 3) must be used.

void test () {

int X; /% 4 bytes on stack x/

foo(&X); /% 4 bytes to pass argument x/
bar (2, 3); /+* 8 bytes to pass arguments */

}
(a) Example C code

test:
sub ESP, 4 ; Reserve stack space for X
sub ESP, 4 ; Reserve argument space
lea EAX, DWORD PTR [ESP + 4] ; EAX = &A

mov DWORD PTR [ESP], EAX
call <foo>
add ESP, 4

sub ESP, 8 ; Reserve argument space
mov DWORD PTR [ESP], 2

mov DWORD PTR [ESP + 4], 3

call <bar>

add ESP, 8
add ESP, 4 ; Restore space from X
ret

(b) Traditional TA32 Assembly

Figure 3: Code generation example

2.1 Per-Function Constant Pool

Most targets do not allow initializing registers with arbi-
trary constants in a single instruction: many limit the values
and size of constants that may be used. In order to support
these targets, the per-function constant pool tracks constant
values to be spilled to memory, allowing these constants to
be referenced with load instructions. For the IA32 target,
this is required for floating point constants.

In the machine code representation, entries in the constant
pool are represented as symbolic offsets in the constant pool,
allowing instructions to reference an address that does not
yet exist. At the machine code emission stage, the constant
pool is committed to memory and these symbolic offsets are
resolved to the appropriate physical addresses.

2.2 Stack Space Representation

With a traditional approach to code generation, a com-
piler assigns stack slots to sequential physical offsets on de-
mand, generating concrete machine code immediately. For
example, Figure 3(a) shows an example C function, and
Figure 3(b) shows the code generated by this traditional
approach. The standard TA32 calling conventions cause all
argument values are passed on the stack, requiring stack ad-
justments for arguments to called functions. Variable sized
stack objects (allocated with the ‘alloca’ function) generate
code to modify the stack pointer as the function executes.

In contrast, Jello builds a list of abstract stack locations
used by the function. For each stack object allocated, the
stack frame manager keeps track of alignment and size infor-
mation for the object, assigning it a symbolic identifier. The
stack frame manager does not assign a physical frame offset
until the prologue/epilogue generations phase executes. Op-
erations that temporarily allocate stack space, such as call-
ing a function, add instances of the ‘adjcallstack’ pseudo-

instruction into the code stream to represent this informa-
tion (see Figure 5(a)).

Using this abstract representation of stack objects allows
Jello to be simplified in a number of important ways and also
makes it more powerful. The code generator is simplified
by having a single target-independent interface to allocate
stack objects. The instruction selector can use the mech-
anism to provide the address of stack allocated automatic
variables, the register allocator uses the mechanism to allo-
cate spill slots, and the prologue/epilogue inserter uses the
mechanism to allocate spill slots for callee-saved registers.
This representation also allows for the traditional “frame-
pointer elimination” optimization to be conveniently imple-
mented (described in Section 6.3). Finally, because stack
objects can be reordered without having to modify the ma-
chine code representation, the stack may be optimized to
increase locality and stack objects can be packed to reduce
space wasted due to alignment.

The prologue/epilogue phase of code generation is respon-
sible for converting the abstract frame references into physi-
cal offsets. First, it adds spill and restore code for any callee-
saved registers modified by the function. Next, it assigns
physical stack offsets to all stack objects in the stack frame
manager. Third, it scans the function, rewriting any ab-
stract frame references with physical frame references. Dur-
ing this pass, it takes note of the maximum values passed
to a ‘adjcallstack’ pseudo-instruction, and uses the target
description to rewrite the abstract instructions into physi-
cal instructions. Finally, it uses the target descriptor to add
target-specific prologue and epilogue code to the function,
using information gathered through this analysis (the IA32
implementation of these hooks is described in Section 6.3).

3. TARGET DESCRIPTION

The problem of JIT compilation for a target-independent
bytecode, if solved in a target-independent manner, requires
an efficient representation of target-specific attributes such
as the register file and instruction set.

Registers are modeled as opaque enumerated values with
associated flags that describe properties of these registers.
This organization is designed to minimize the amount of
information exposed to the target-independent code, while
providing efficient access to required information.

The properties of the registers that target-independent
code typically needs to expose are the type of the register
(for example, integer versus floating point) and the size (bit-
width) of the register. These properties are described in our
current implementation using flags in a bit vector.

As described above, in the lower-level intermediate repre-
sentation used by Jello for code generation, target-specific
“physical” registers with direct reference to actual ar-
chitected state can be freely intermingled with target-
independent “virtual” registers that must be assigned to
“physical” registers before execution may proceed. This is
achieved, as described in Section 2, by assigning both types
of registers to the same type of enumerated value, with a
threshold value separating the two types. The result is that
target-independent code can manipulate instructions that
reference registers of any type, size, or relation to archi-
tected state, without having to introduce special cases.

The target-independent code also needs to be able to in-
spect one of these opaque register values to find out what
its attributes are. Thus, the machine-independent interface



to the register file exports methods which allow for a target-
independent module to inspect the sets of callee-saved and
caller-saved registers, enumerate the various classes of reg-
isters available on the target machine, and get the register
allocatable registers in a particular class. This is useful, for
example, when trying to find a “physical” register to store
the contents of a “virtual” register. The register informa-
tion interface also exposes information about aliases in the
register file, which is crucial for the IA32 integer registers’.

The target description also exposes abstract sequences of
target-specific code useful for all targets. For example, the
prologue/epilogue insertion pass eventually uses these hooks
to insert a target-specific prologue and epilogues into the
program. Similarly, the register allocator uses these hooks
to spill and reload spilled values from the stack.

The target description exposes a small amount of infor-
mation about the opaque machine instructions as well. For
example, a set of flags is associated with each instruction
type, indicating whether it reads or writes memory, can
change control flow, etc. Also it exposes information about
registers that are implicitly read or written by the instruc-
tion. On the TA32, for example, the 32-bit ‘div’ instruction
implicitly reads and writes both the EAX and EDX registers,
although neither are represented in the machine code inter-
mediate representation. This information is necessary for
phases like register allocation.

4. TARGET-INDEPENDENT PHASES

With a machine-independent instruction representation
and target description framework, we can create target-
independent phases. Currently, Jello contains three target-
independent phases: Live Variable Analysis, Register Allo-
cation, and Prologue/Epilogue code insertion.

4.1 Live Variable Analysis

The live variable analysis phase constructs live-ranges for
SSA and physical registers to be used by the register al-
locator (it is also used by the IA32 specific floating-point
support phase, described in Section 6.2). For each register
value, live variable analysis identifies the instructions where
the register value has to be available. The Jello live variable
analysis phase takes advantage of the SSA form for machine
instructions to efficiently compute live ranges.

For each SSA register definition, we inspect all of its uses.
Due to properties of SSA form (definitions must dominate
their uses), we simply recursively mark any predecessor basic
blocks of a use as live until we reach the definition. SSA
form allows us to use sparse algorithms which operate over
the entire function at a time. Physical registers, which may
appear in machine code at any time, are handled with purely
local techniques because their lifetimes are constrained to a
basic block (for phases before register allocation).

4.2 Register Allocation

Register allocation transforms machine code in SSA form
(with the occasional physical register mentioned) to only use
physical registers. To do this, it allocates some SSA registers
to physical registers and spills others to the stack. It uses
the target descriptor information to get information about
which registers are available for allocation, which registers

1This is a generic solution to a problem that manifests on other tar-
gets as well. For example, the Sparc architecture has aliasing in its
floating-point register file.

are implicitly read and written by a machine instruction,
and to generate spill and reload code.

One piece of information a register allocator needs is
“type” information for virtual registers, so it knows which
physical registers are compatible with a certain SSA reg-
ister. For instance, the IA32 architecture contains 8, 16,
and 32-bit integer registers, and floating point registers. We
must be sure to allocate SSA registers to the correct class
of physical register given a target with multiple types.

Stated more generally, we need to be able to map from
the type and size of the data represented in SSA values to
the subset of the machine’s registers that can hold that type
of data. The solution we implemented for this problem is to
have each target machine description export an interface for
its register classes. Each register class is a set of registers
that can hold a particular piece of data. For IA32, these
sets are the 8-, 16-, and 32-bit integer registers, plus the
floating point registers. During instruction selection, each
SSA register created adds an entry to the register table,
which indicates the register class it belongs to.

Jello currently has two pluggable register allocator algo-
rithms implemented: a “peephole” register allocator and a
“local” register allocator. The peephole allocator does not
hold values in registers across instructions: Before a com-
putation, it loads all values into registers; after the com-
putation, it stores any computed values to memory. The
local register allocator keeps values in registers across a sin-
gle basic block. We are working on implementing a global
linear-scan algorithm [19, 21], but getting the system up and
running quickly has been our primary goal.

4.3 Prologue and Epilogue Code Insertion

As described in Section 2.2, a separate phase is used to
write out the prologue and epilogue for each function. This
phase actually does three separate, but related, transforma-
tions. The first is to scan the machine code looking for writes
to callee-saved registers. Each callee-saved register is then
spilled and reloaded in the entrance and exits, respectively,
of the function. The second effect is to finalize the layout of
the abstract stack objects tracked by the frame manager, fol-
lowed by rewriting references to abstract stack objects with
references to their newly assigned physical offsets. Finally,
the phase uses the target descriptor to insert the canned
prologue and epilogue code sequence for the target, which
may optionally use information obtained during the previ-
ous steps to customize the generated code (see Section 6.3
for an example).

4.4 Future Target-Independent Phases

The code generation diagram in Figure 1 includes two
target-independent stages which are planned, but currently
not implemented. These phases perform target-specific op-
timizations on either the SSA version of the function or on
the post-register allocation version of the function. Other
optimizations, such as instruction scheduling may be added
in the more distant future as well.

The “SSA Opts” phase is intended to host a variety of
light-weight SSA optimizations that are useful to improve
the efficiency of code generated by the instruction selector.
Although the input LLVM code is highly optimized, some
optimization opportunities will not be exposed until after in-
struction selection has been performed. For example, many
RISC processors must use a sequence of instructions to load



arbitrary integer constants into a register. If two similar con-
stants are loaded into registers, there many be redundancy
in the generated code that may be eliminated.

The “Peephole Opts” phase is intended to support a
table-driven peephole optimization phase which uses target-
specific tables to drive a target-independent optimization
algorithm. This phase can be used to repair suboptimal se-
quences of generated code that cannot easily be incorporated
into the earlier algorithms.

5. TARGET-SPECIFIC PHASES

The two target-machine-specific phases of compilation
found in Jello are instruction selection and machine code
emission. We describe each in detail and what aspects of
their inner working require them to be target-specific.

5.1 Instruction Selection

The first target-dependent pass is instruction selection,
where the knowledge of the target platform guides the trans-
lation of LLVM bytecode to a lower-level machine instruc-
tion stream. Although the pass is machine-dependent, i.e.
it encodes particular knowledge about the architecture, the
output of this pass is abstract machine instructions which
can be processed by the target-independent phases.

The two most common strategies for instruction selection
are simple expansion followed by peephole optimization [5,
11], and instruction selection via optimal pattern matching
on the intermediate representation [9, 10]. An expansion-
based code generator expands each instruction in the inter-
mediate representation (which is LLVM in this case), into
a canned sequence of target-specific instructions. Because
the code generated through this scheme is often quite inef-
ficient, intensive peephole optimization is used to improve
the quality. This is the approach currently implemented in
the TA32 instruction selector.

Instruction selection via pattern matching operates by
computing a covering of the intermediate representation us-
ing tiles which represent instructions in the target machine
code. Costs are assigned to these tiles (which often rep-
resent the execution time or size of the instruction), and
a dynamic programming technique is used to compute the
minimum cost cover for the input IR. This approach pro-
vides faster compilation and more efficient code than an
expansion-based approach (because peephole optimization
is largely unnecessary), but cannot operate on general DAG
structures in the intermediate representation efficiently [8].

As work on Jello continues, we plan to replace our
expansion-based instruction selector with a pattern-matching
selector. Ertl has shown in [8] that although tiling DAGs is
NP-complete in general, it can be performed in linear time
for a useful subset of general grammars. We believe that this
approach will provide the best tradeoff between compilation
time efficiency and the efficiency of the generated code.

5.2 Machine code emission

At the end of the compilation process, the machine in-
structions need to be assembled and loaded into memory as
a binary image which will be executed directly by the pro-
cessor. Jello does not depend on any external assemblers to
aid it in this process. Therefore, we have encoded the bi-
nary sequences that instructions are translated to, and the
width of bit-fields for parameters and flags that need to be
encoded into the instructions for them to be executed with

the intended side-effects.

Our continuing work involves developing an instruction
description mechanism that will create machine code emit-
ters based on a target instruction set description. This tool
accepts a description of the target ISA which is written in
a special mark-up language which allows instructions to be
separated into classes based on their common traits, such as
number of parameters they can accept or their implicit side-
effects, and allows for a “class structure” to inherit these
commonalities so that repetition in instruction descriptions
may be factored out. Also, this method allows the target
instruction set description to be kept readable and easily
extensible, allowing it to be tuned and extended by users
who are not comfortable with the Jello source code.

6. THEIA32 TARGET IMPLEMENTATION

The first concrete target that Jello supports is the Intel
TA32 architecture. We chose this architecture as our target
because it has a number of peculiar features, making it a
great challenge. In addition, the TA32 architecture is one
of the most widely available and cost effective, with many
implementations available and many systems supporting it.
An TA32 back-end is also a useful addition to the LLVM
compiler infrastructure which could previously only generate
native code for the 64-bit Sparc platform.

The TA32 back-end is composed of four primary pieces: an
implementation of the Target Description classes (described
in Section 3), an LLVM to IA32 instruction selector, a ma-
chine code emitter (which writes binary machine code to
memory), and an assembly code printer (for debugging).

The TA32 implementation of the target description is
straight-forward. We currently expose four register classes:
one each for 8-bit, 16-bit, and 32-bit integer registers, and
one for the floating point registers. Our current implementa-
tion has a very simple implementation of the machine code
instruction information classes.

The TA32 instruction selector is the largest part of the
IA32 back-end (in terms of lines of code). In an effort to
make this transformation as swift as possible, the IA32 in-
struction selector consists primarily of methods that perform
data-directed table lookups on LLVM instructions’ operand
types, and emit short sequences of machine instructions that
perform appropriate operations. In other words, it is a sim-
ple code expansion-based instruction selector, much like the
one used in GCC [11]. This implementation is very simple
and relatively efficient, and can lead to efficient code when
combined with an aggressive peephole optimizer [5].

The IA32 machine code emitter and printers® are the
other large part of the IA32 back-end, largely because of
the odd encodings that must be used, and the fact that
they have all been implemented manually.

6.1 Three-Address Instructions

One peculiar feature of the TA32 architecture is that it
does not have “three address instructions” which read two
operands and write a third. Instead, the IA32 has auto-
updating instructions which read two operands and over-
writes one of them (for example, EAX += ECX instead of R1
= R2 + R3). This is problematic to represent in SSA form,
because an SSA register may only have a single definition.

2The machine code printer is not in the critical path; it is only used
for debugging.



To solve this issue, we actually represent the two-address
TA32 instructions as if they were three-address instructions.
This allows the SSA representation to work in a natural
way, allowing SSA based peephole optimizers to be very ag-
gressive. When register allocation occurs, the instructions
contain flags which indicate to the register allocator that
two of the register operands must be allocated to the same
physical register, thus providing auto-updating instructions
for the final machine code.

6.2 1A32 Floating Point Support

Another peculiar feature of the IA32 architecture, from
the compiler writer’s perspective, is that it does not expose
a regular register file for floating-point operations. Instead,
floating-point operations operate on a stack of values; this
stack implements the usual push, pop, duplicate and ex-
change operations, and instructions operate on the top-of-
stack and a specified element.

In recent implementations of the IA32 architecture, the
exchange operation is implemented using the register re-
name table and incurs no significant pipeline overhead when
paired with a floating-point calculation. This means that
operands to floating-point calculations may effectively re-
side in any stack slot without loss of efficiency.

Using this insight, we can use the standard register alloca-
tion algorithm to assign values to the floating-point operand
stack slots just as we assign values to general-purpose reg-
isters. The algorithm we use is described in a recent report
by Leung and George [16].

For purposes of register allocation, the IA32 machine de-
scription defines 7 floating-point registers %FP0O ... %FP6,
as well as RISC-like three-address floating-point pseudo-
instructions that operate on registers. A separate target-
dependent phase runs after register allocation that rewrites
floating-point register accesses as stack operations, pairing
these operations with appropriate exchange operations so
that values are moved ” just-in-time” to the stack slots where
they are needed. In practice, we find that only a small num-
ber of exchange operands are actually necessary.

6.3 1A32 Stack Optimizations

The IA32 architecture only provides 8 32-bit integer reg-
isters. This dearth of registers causes considerable pressure
for the register allocator, more so if one is used as a stack
pointer and another as the frame pointer. However, in most
cases, it is possible to completely eliminate the need for a
dedicated frame pointer, thus freeing up another register.
The traditional layout of a stack frame is shown in Figure 4.

Previous

S Stack
Incoming Incoming Frame
Stack Argument Area
Pointer
(ESP) Return Address
Fixed Size
Frame Stack Objects
Pointer Current
(EBP) Stack
Variable Size Frame
Current Stack Objects
Stack
Pointer Outgoing

Argument Area

Figure 4: TA32 Stack Frame Layout

This diagram shows that distinct areas exist for fixed-size
stack objects, variable sized stack objects, and temporary

stack allocations used for outgoing function call arguments.
In most functions, however, no variable sized stack objects
(created with the ‘alloca’ intrinsic) are ever created, which
makes the frame pointer and stack pointer registers to be
equal throughout the body of the function. In this case, we
can use the stack pointer in all operations which would use
the frame pointer, allowing the frame pointer to be used as
an additional general-purpose register.

When register allocation is performed, the register allo-
cator queries the TA32 target for a list of allocatable regis-
ters in the 32-bit integer class. If the current function has
no variable-sized stack objects (which are only created dur-
ing instruction selection), the TA32 target returns the EBP
register as an allocatable register in addition to the stan-
dard registers. When the prologue/epilogue pass rewrites
abstract frame references and pseudo-instructions, it uses
the same target hooks to do the target-specific manipula-
tion. If the frame-pointer elimination optimization is possi-
ble, these hooks simply rewrite the abstract frame references
in terms of the stack pointer instead of the frame pointer.

test:

lea %regl024 , DWORD PTR [<stack obj #0>] ; &X
adjcallstack 4

mov DWORD PTR [ESP], %regl024

call foo

adjcallstack —4

adjcallstack 8

mov DWORD PTR [ESP], 2
mov DWORD PTR [ESP + 4], 3
call bar

adjcallstack —8

ret

(a) Abstract Jello Code
test:
sub ESP, 12 ; reserve all stack space
lea EAX, DWORD PTR [ESP + 8] ; 6X
mov DWORD PTR [ESP], EAX
call foo

mov DWORD PTR [ESP], 2
mov DWORD PTR [ESP + 4], 3

call bar
add ESP, 12 ; restore all stack space
ret

(b) Final Jello Code

Figure 5: Jello code generation example

The frame pointer optimization enables two other opti-
mizations which also help common cases. In particular, if a
function contains calls to other functions, we can optimize
computation of the outgoing argument area for these calls.
Using the ‘adjcallstack’ pseudo-instruction, described in
Section 2.2, Jello computes the size of the largest outgoing
argument area (in Figure 5(a), the maximum is 8 bytes)
and preallocates space for the outgoing argument areas in
the same instruction that it allocates space for fixed-size ob-
jects. For the example, the final code generated by Jello is
shown in Figure 5(b).

If a function does not call other functions, i.e., it is a “leaf
function”, and there are no variable sized stack objects, we
can perform a different optimization. In this case, there
is no need to adjust the stack pointer on entry and exit



to the function at all. Instead, the IA32 target rewrites
frame references to use offsets from the original version of
the stack pointer to access stack objects “off the bottom of
the stack”. Eliminating the stack pointer adjustment in the
function saves one instruction on entry, and one instruction
in each exit of the function. Note that this optimization
applies to large leaf functions just as well as it does to small
leaf functions, which would probably be inlined anyway.

6.4 Big-Endian and Long Pointer Emulation

A problem for the Jello project was that the current
LLVM C front-end only generates LLVM bytecode for the
Sparc V9 target. This is problematic for the IA32 target,
since non-type-safe programs will fail because of pointer size
(64 vs. 32 bits) and endianness (big vs. little) differences.

Our initial solution to the problem, which is intended to
be temporary, is to emulate a big-endian 64-bit target as
necessary. During the instruction selection phase, all values
loaded from memory are byte-swapped after the load, and
all values to be stored to memory are byte-swapped before
the store. To emulate 64-bit pointers, we simply use the
low 32-bits as the actual pointer value. This emulation is
controllable by a flag in the bytecode indicating properties
of the target that the bytecode is compiled for.

This emulation imposes a fairly heavy run-time perfor-
mance cost (especially for floating-point codes, which must
load values into integer registers to perform the byte-swap),
but has been critical to get the Jello JIT compiler up and
running quickly. In practice, we have found that this gives
us almost complete compatibility with Sparc bytecode files.
Work is now progressing on a retargetable C front-end which
will allow us to offer competitive performance on the IA32.

7. THE JELLO VIRTUAL MACHINE

Being a Just-In-Time compiler, Jello must be able to com-
pile a function, start execution of the function, and then
regain control if a call to an uncompiled function executes.
In order to support this, Jello currently emits call instruc-
tions that target functions which have not been compiled as
if they called a null pointer. When the call instruction is
executed, a segmentation fault will be generated.

Jello installs a trap handler for SIGSEGV, the segmentation
fault signal in Unix, in order to trap these events. When a
SIGSEGV is delivered to Jello, we first check to see if it’s due
to lazy function compilation; if so, we look up the return
address of the function call (which was pushed onto the stack
by the call instruction). Given the return address of the
call, we consult a hashtable to figure out which function was
supposed to be called from that location.

If the function has not yet had code generated for it, the
code generator is invoked at this time. Finally, the program
counter of the process is modified to point to the real func-
tion address, the original call instruction is updated to point
to the newly-generated code, and the SIGSEGV handler re-
turns, causing execution to continue in the called function.
Because we update the original call instruction, we should
only get at most one signal for each call site. This technique
is known as “chaining”, and is a well-known technique for
bypassing the main translation loop of a virtual machine [3].

Note that this approach does not work for indirect calls.
The problem with indirect calls is that taking the address of
a function would not cause a fault (it would simply copy null
into a register), so we would only find out about the problem

when the indirect call itself was made. At this point we
would have no way of knowing what the intended function
destination was. Because of this, we immediately generate
code for a function f whenever we generate code for another
function or initialize a global value that requires us to know
the address of f, side-stepping the problem completely. A
future extension to this mechanism would be to generate,
as a response to the need for function pointers, trampoline
functions which let us know dynamically when a function’s
code needs to be generated.

Using the SIGSEGV trap for this purpose might seem to
cause problems for programs that handle SIGSEGV them-
selves, because the signal would not be delivered to the
program which registered its own SIGSEGV handler. How-
ever, Jello knows whether a trapped SIGSEGV is due to its
lazy function resolution mechanism or not, and generates
the code which ultimately may register the signal handler.
As such, it recognizes calls to signal and sigaction which
are trying to install or inspect the current SIGSEGV handler.
By generating code to intercept this call, Jello can record at-
tempts to modify the handler and return information about
the logically installed handler. Anytime a SIGSEGV is re-
ceived that does not come from a recognized call site, Jello
dispatches to the program’s logical signal handler instead of
aborting the program.

8. EXPERIENCES AND OBSERVATIONS

Development on the Jello project is currently far from
over. We are now at a point in time where the code gen-
eration infrastructure is well-developed, and the generated
code is stable and works for every code we tested, even in
big-endian “emulation” mode. However, the performance of
the generated code is approximately a factor of two times
slower than the code generated by a static compiler (which is
primarily due to the byte-swapping instructions imposed by
emulation mode and the lack of a global register allocator).

Although the absolute performance of the generated code
is not yet competitive, we have learned a number of valu-
able lessons. In particular, we feel that our goal of develop-
ing a retargetable code generator has been a success: there
is a clear distinction between target-specific and target-
independent code and a large amount of the code is sharable.

When developing the code generation interfaces, we tried
to anticipate the types of architectural challenges that other
targets might have which could be difficult to properly sup-
port. In particular, we feel that writing a new target for
the Sparc V9 architecture should be straight-forward, even
given features like register windows, branch delay slots, more
complex calling conventions, and aliasing among the floating
point register file.

Another key lesson learned is that the LLVM virtual in-
struction set works well as input to the JIT compiler. In par-
ticular, not having to perform extensive optimization of the
input program at run-time and having the input program
in SSA form both dramatically speed up dynamic compila-
tion. Our measurements indicate that compiler overhead is
typically less than 5% of total execution time in a sample
of test programs, even when the code generator is built in
debug mode with extensive assertion checking enabled.

Table 1 shows aggregate timing information for various
phases of compilation over a suite of 40 benchmark pro-
grams. The table shows that we spend a majority of our
time in the register allocator and live-variable phases of com-



Phase Time
Local Register Allocator | 35.87%
Live Variable Analysis 32.35%
Instruction Selection 14.83%
Prolog/Epilog Insertion 8.14%
Machine Code Emitter 5.35%
Peephole Optimizer 1.37%
FP Stackifier 1.10%
Eliminate PHI nodes 0.95%

Table 1: Compiler overhead breakdown

pilation. This makes sense as the other phases are almost
all implemented as a single pass that only affect a subset
of the instructions in the program. In contrast, the register
allocator and live variable analysis phases must inspect and
modify each instruction in the program, and perform several
passes each.

9. RELATED WORK

There are many virtual machines for programming lan-
guages, notably the Java Virtual Machine [17] with its many
optimizing JIT implementations (for example, [2]). Other
language-specific JITs exist, including the Parrot JIT for
Perl 6 [12] and Psyco [20] for the Python language.

What sets Jello apart from these VM technologies is that
it is a JIT compiler for the C language, which is usually not
compiled to an abstract bytecode and executed with a JIT
compiler. Additionally, unlike the verifiably safe virtual ma-
chines like Java and Microsoft’s CLR [18], the LLVM byte-
code representation does not encode implicit safety checks
which will be executed at run-time. Thus, the code can
be extensively optimized at static compile time, without
the possibility of extra code being inserted during dynamic
translation to native code. Also, as a low-level representa-
tion [14], LLVM does not encode high-level language-specific
constructs either (such as classes or objects).

Retargetable compilers have been long studied and are
well understood. Examples include vCODE [6], DCG [7],
FaBrus [15], and GCC [11]. Dynamic compilation has been
used for many other purposes, including reoptimization from
machine code [1].

10. CONCLUSION

Jello is designed as an efficient retargetable Just-In-Time
compiler for LLVM bytecode. We have described the design
and implementation of the system, detailing the important
design features which make it modular and largely target-
independent. We plan to use Jello as a test-bed for future
research in virtual machine technologies and runtime opti-
mization for C codes, taking advantage of these modularity,
extensibility and portability features.

11. REFERENCES

[1] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a
transparent dynamic optimization system. ACM
SIGPLAN Notices, 35(5):1-12, 2000.

[2] M. G. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind,
V. Sarkar, M. J. Serrano, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapefio Dynamic
Optimizing Compiler for Java. In Java Grande, pages
129-141, 1999.

[3] R. Cmelik and D. Keppel. Shade: A fast
instruction-set simulator for execution profiling. ACM

ey
e

SIGMETRICS Performance Fvaluation Review,
22(1):128-137, May 1994.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Transactions on Programming Languages and
Systems, pages 13(4):451-490, October 1991.

J. W. Davidson and D. B. Whalley. Quick compilers
using peephole optimization. Software - Practice and
Ezxperience, 19(1):79-97, 1989.

D. R. Engler. vVCODE: a retargetable, extensible, very
fast dynamic code generation system. In SIGPLAN
Conference on Programming Language Design and
Implementation, pages 160-170, 1996.

D. R. Engler and T. A. Proebsting. DCG: an efficient,
retargetable dynamic code generation system. In
Proceedings of the sizth international conference on
Architectural support for programming languages and
operating systems, pages 263—272. ACM Press, 1994.
M. A. Ertl. Optimal code selection in DAGs. In
Principles of Programming Languages (POPL ’99),
1999.

C. W. Fraser, R. R. Henry, and T. A. Proebsting.
BURG — fast optimal instruction selection and tree
parsing. ACM SIGPLAN Notices, 27(4), Apr 1992.
C. W. Fraser and T. A. Proebsting. Finite-state code
generation. ACM SIGPLAN Notices, 34(5), 1999.
Free Software Foundation. GNU Compiler Collection.
http://gce.gnu.org.

D. Grunblatt and A. B. Hansen. Parrot JIT
subsystem.

http://www.parrotcode.org/docs /fit.pod. html.

C. Lattner. LLVM: An infrastructure for multi-stage
optimization. Master’s thesis, Computer Science
Dept., University of Illinois at Urbana-Champaign,
Urbana, IL, Dec 2002. See http://llvm.cs.uiuc. edu.

C. Lattner and V. Adve. The LLVM Instruction Set
and Compilation Strategy. Tech. Report
UTUCDCS-R-2002-2292, Computer Science Dept.,
Univ. of Illinois at Urbana-Champaign, Aug. 2002.
P. Lee and M. Leone. Optimizing ML with run-time
code generation. In SIGPLAN Conference on
Programming Language Design and Implementation,
1996.

A. Leung and L. George. Some notes on the new
MLRISC X86 floating point code generator.

T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, Reading, MA, 1997.
Microsoft Corporation. .NET Framework Developer’s
Guide - Common Language Runtime Overview, 2001.
M. Poletto and V. Sarkar. Linear scan register
allocation. ACM Transactions on Programming
Languages and Systems, 21(5):895-913, 1999.

A. Rigo. Psyco, the Python Specializing Compiler.
http://psyco.sourceforge.net.

O. Traub, G. H. Holloway, and M. D. Smith. Quality
and speed in linear-scan register allocation. In
SIGPLAN Conference on Programming Language
Design and Implementation, pages 142—-151, 1998.



